Nimbostratus and some cumulus in this group usually achieve moderate or deep vertical extent, but without towering structure. However, with sufficient airmass instability, upward-growing cumuliform clouds can grow to high towering proportions. Although genus types with vertical extent are often considered a single group,[22] the International Civil Aviation Organization (ICAO) further distinguishes towering vertical clouds as a separate group or sub-group. It is specified that these very large cumuliform and cumulonimbiform types must be identified by their standard names or abbreviations in all aviation observations (METARS) and forecasts (TAFS) to warn pilots of possible severe weather and turbulence.[47] When towering vertical types are considered separately, they comprise the aforementioned cumulonimbus genus and one cumulus subtype, cumulus congestus (Cu con), which is designated towering cumulus (Tcu) by ICAO. There is no stratiform type in this group because by definition, even very thick stratiform clouds cannot have towering vertical structure, although nimbostratus may be accompanied by embedded towering cumuliform or cumulonimbiform types.This genus type is a heavy towering cumulonimbiform mass of free convective cloud with a dark-grey to nearly black base and a very high top in the form of a mountain or huge tower.[51] Cumulonimbus can produce thunderstorms, local very heavy downpours of rain that may cause flash floods, and a variety of types of lightning including cloud-to-ground that can cause wildfires.[52] Other convective severe weather may or may not be associated with thunderstorms and include heavy snow showers, hail,[53] strong wind shear, downbursts,[54] and tornadoes.[55] Of all these possible cumulonimbus-related events, lightning is the only one of these that requires a thunderstorm to be taking place since it is the lightning that creates the thunder. Cumulonimbus clouds can form in unstable airmass conditions, but tend to be more concentrated and intense when they are associated with unstable cold fronts.The species fractus shows variable instability because it can be a subdivision of genus-types of different physical forms that have different stability characteristics. This subtype can be in the form of ragged but mostly stable stratiform sheets (stratus fractus) or small ragged cumuliform heaps with somewhat greater unstability (cumulus fractus).[57][58] When they form at low altitudes, stratiform and cumuliform genus-types can be torn up into shreds by brisk low level winds that create mechanical turbulance against the ground. Fractus clouds can form in precipitation at low altitudes, with or without brisk or gusty winds. They are closely associated with precipitating cloud systems of considerable vertical and sometimes horizontal extent, so they are also classified as accessory clouds under the name pannus.
0 comments